Overdetermined PDEs in general relativity

Tsuyoshi Houri

Department of Physics, Kobe University

In collaboration with
Yukinori Yasui (Osaka City University)

Spacetime symmetry

- Killing vector fields:

$$
\nabla_{\mu} \xi_{\nu}+\nabla_{\nu} \xi_{\mu}=\mathbf{0}
$$

Killing symmetries

vector fields	Killing	Conformal Killing
symmetric	Killing-Stackel	Conformal Killing-Stackel
Stackel 1895		
anti-symmetric	Killing-Yano	Conformal Killing-Yano
		Yano 1952

Hidden symmetry of spacetime

- Killing-Stackel tensors

$$
\nabla_{(\mu} K_{\left.v_{1} v_{2} \ldots v_{n}\right)}=0 \quad K_{\left(\mu_{1} \mu_{2} \ldots \mu_{n}\right)}=K_{\mu_{1} \mu_{2} \ldots \mu_{n}}
$$

- Killing-Yano tensors

$$
\nabla_{(\mu} \xi_{\left.v_{1}\right) v_{2} \ldots v_{n}}=0 \quad \xi_{\left[\mu_{1} \mu_{2} \ldots \mu_{n}\right]}=\xi_{\mu_{1} \mu_{2} \ldots \mu_{n}}
$$

Why Killing symmetry?

- Conserved quantities along geodesics
- Separability

Hamilton-Jacobi equations for geodesics, Klein-Gordon and Dirac equations

- Exact solutions

Stationary, axially symmetric black holes with spherical horizon topology

The purpose of this talk

To show a simple method for finding Killing symmetries for a given metric.

Key words: Overdetermined PDEs, integrability condition, prolongation

Plan

Introduction

Review I: Integrability conditions for systems of first order PDEs
Review II: Prolongation of PDEs and jet space
Prolongation of Killing equation
Prolongation of Killing-Yano equation
Prolongation of Killing-Stackel equation
Summary

Review I:
Integrability conditions for systems of first order PDEs

A system of first order PDEs

$$
\begin{aligned}
\frac{\partial u^{\alpha}}{\partial x^{i}}= & \psi_{i}^{\alpha}(x, u) \quad i=1, \cdots, n \quad \alpha=1, \cdots, N \\
& x \text {; variables } \quad x=\left(x^{1}, x^{2}, \cdots, x^{n}\right) \\
& u \text {; unknown functions } \quad u=\left(u^{1}, u^{2}, \cdots, u^{N}\right) \quad u^{\alpha}=u^{\alpha}(x)
\end{aligned}
$$

Question:

Does solution exist?
How many constants does the solution depend on?
Explicit expressions?

Integrability condition

$$
\begin{gathered}
\frac{\partial u^{\alpha}}{\partial x^{i}}=\psi_{i}^{\alpha}(x, u) \\
\frac{\partial}{\partial x^{j}} \frac{\partial u^{\alpha}}{\partial x^{i}}=\frac{\partial \psi_{i}^{\alpha}}{\partial x^{j}}+\sum_{\beta} \frac{\partial \psi_{i}^{\alpha}}{\partial u^{\beta}} \frac{\partial u^{\beta}}{\partial x^{j}}=\frac{\partial \psi_{i}^{\alpha}}{\partial x^{j}}+\sum_{\beta} \frac{\partial \psi_{i}^{\alpha}}{\partial u^{\beta}} \psi_{j}^{\beta} \\
\frac{\partial}{\partial x^{i}} \frac{\partial u^{\alpha}}{\partial x^{j}}=\frac{\partial \psi_{j}^{\alpha}}{\partial x^{i}}+\sum_{\beta} \frac{\partial \psi_{j}^{\alpha}}{\partial u^{\beta}} \frac{\partial u^{\beta}}{\partial x^{i}}=\frac{\partial \psi_{j}^{\alpha}}{\partial x^{i}}+\sum_{\beta} \frac{\partial \psi_{j}^{\alpha}}{\partial u^{\beta}} \psi_{i}^{\beta} \\
\frac{\partial \psi_{i}^{\alpha}}{\partial x^{j}}-\frac{\partial \psi_{j}^{\alpha}}{\partial x^{i}}+\sum_{\beta}\left(\frac{\partial \psi_{i}^{\alpha}}{\partial u^{\beta}} \psi_{j}^{\beta}-\frac{\partial \psi_{j}^{\alpha}}{\partial u^{\beta}} \psi_{i}^{\beta}\right)=0
\end{gathered}
$$

Frobenius theorem

The necessary and sufficient conditions for the unique solution $u^{\alpha}=u^{\alpha}(x)$ to the system

$$
\frac{\partial u^{\alpha}}{\partial x^{i}}=\psi_{i}^{\alpha}(x, u) \quad i=1, \cdots, n \quad \alpha=1, \cdots, N
$$

such that $u\left(x_{0}\right)=u_{0}$ to exist for any initial data $\left(x_{0}, u_{0}\right)$ is that the relation

$$
\frac{\partial \psi_{i}^{\alpha}}{\partial x^{j}}-\frac{\partial \psi_{j}^{\alpha}}{\partial x^{i}}+\sum_{\beta}\left(\frac{\partial \psi_{i}^{\alpha}}{\partial u^{\beta}} \psi_{j}^{\beta}-\frac{\partial \psi_{j}^{\alpha}}{\partial u^{\beta}} \psi_{i}^{\beta}\right)=0
$$

hold.

Discussion

- If the Frobenius integrability conditions hold, the general solution depends on N arbitrary constants.
- If not, they give a set of algebraic equations

$$
F_{1}(x, u)=0
$$

- Differentiating these equations and eliminating the derivatives of u using the original equation leads to a new set of equations

$$
F_{2}(x, u)=0
$$

- Proceeding in this way we get a sequence of sets of equations

$$
F_{1}(x, u)=0, \quad F_{2}(x, u)=0, \quad F_{3}(x, u)=0, \quad \cdots
$$

Theorem

The system

$$
\frac{\partial u^{\alpha}}{\partial x^{i}}=\psi_{i}^{\alpha}(x, u) \quad i=1, \cdots, n \quad \alpha=1, \cdots, N
$$

admits solution if and only if there exists a positive integer $K \leq N$ such that the set of algebraic equations

$$
F_{1}=F_{2}=F_{3}=\cdots=F_{K}=0
$$

is compatible and that the set $F_{K+1}=0$ is satisfied identically.
If p is the number of independent equations in the first K sets, then the general solution depends on N - p arbitrary constants.

Particular case

$$
\frac{\partial u^{\alpha}}{\partial x^{i}}=\psi_{i}^{\alpha}(x, u) \quad i=1, \cdots, n \quad \alpha=1, \cdots, N
$$

In particular, if ψ_{i}^{α} are homogeneous linear functions of u^{β}, the system is written as

$$
\frac{\partial u^{\alpha}}{\partial x^{i}}=\psi_{i \beta}^{\alpha}(x) u^{\beta}
$$

This system and its integrability condition can be expressed in terms of geometry.

Parallel equation

$$
\begin{array}{ll}
\frac{\partial u^{\alpha}}{\partial x^{i}}=\psi_{i \beta}^{\alpha}(x) u^{\beta} \quad i=1, \cdots, n \quad \alpha=1, \cdots, N \\
\frac{\partial u^{\alpha}}{\partial x^{i}}-\psi_{i \beta}^{\alpha}(x) u^{\beta}=0 & \\
D_{i} u^{\alpha}=0 & D_{i} u^{\alpha}:=\frac{\partial u^{\alpha}}{\partial x^{i}}-\psi_{i \beta}^{\alpha}(x) u^{\beta}
\end{array}
$$

The system can be expressed as parallel equation for a section u^{α} of a vector bundle of rank N.

Curvature condition

(also called integrability condition, consistency condition)
For a connection D_{i}

$$
D_{i} u^{\alpha}:=\frac{\partial u^{\alpha}}{\partial x^{i}}-\psi_{i \beta}^{\alpha}(x) u^{\beta}
$$

the curvature of D_{i} is defined by $\left(D_{i} D_{j}-D_{j} D_{i}\right) u^{\alpha}=-F_{i j \beta}{ }^{\alpha} u^{\beta}$.

$$
D_{i} u^{\alpha}=0 \quad \Rightarrow \quad F_{i j \beta}^{\alpha} u^{\beta}=0
$$

This is equivalent to the Frobenius integrability condition

Frobenius theorem

The necessary and sufficient conditions for the unique solution $u^{\alpha}=u^{\alpha}(x)$ to the system

$$
D_{i} u^{\alpha}=0 \quad i=1, \cdots, n \quad \alpha=1, \cdots, N
$$

where

$$
D_{i} u^{\alpha}:=\frac{\partial u^{\alpha}}{\partial x^{i}}-\psi_{i \beta}^{\alpha}(x) u^{\beta}
$$

such that $u\left(x_{0}\right)=u_{0}$ to exist for any initial data $\left(x_{0}, u_{0}\right)$ is that the relation

$$
F_{i j \beta}{ }^{\alpha} u^{\beta}=0
$$

hold.

Discussion

- If the curvature conditions hold, the general solution depends on N arbitrary constants.
- If not, they give a set of algebraic equations

$$
F_{i j \beta}^{\alpha} u^{\beta}=0
$$

- Differentiating these equations and eliminating the derivatives of u using the original equation leads to a new set of equations

$$
\left(D_{k} F_{i j \beta}{ }^{\alpha}\right) u^{\beta}=0 \quad D_{k} F_{i j \beta}{ }^{\alpha}:=\partial_{k} F_{i j \beta}{ }^{\alpha}-\psi_{k \gamma}^{\alpha} F_{i j \beta}^{\gamma}+F_{i j \gamma}{ }^{\alpha} \psi_{k \beta}^{\gamma}
$$

- Proceeding in this way we get a sequence of sets of equations

$$
F_{i j \beta}^{\alpha} u^{\beta}=0, \quad\left(D_{k} F_{i j \beta}^{\alpha}\right) u^{\beta}=0, \quad\left(D_{\ell} D_{k} F_{i j \beta}^{\alpha}\right) u^{\beta}=0,
$$

Theorem

The system

$$
D_{i} u^{\alpha}=0 \quad i=1, \cdots, n \quad \alpha=1, \cdots, N
$$

admits solution if and only if there exists a positive integer $K \leq N$ such that the set of algebraic equations

$$
F_{i j \beta}^{\alpha} u^{\beta}=0, \quad\left(D_{k} F_{i j \beta}^{\alpha}\right) u^{\beta}=0, \quad\left(D_{\ell} D_{k} F_{i j \beta}^{\alpha}\right) u^{\beta}=0
$$

is compatible and that the set $\left(D^{(K+1)} F\right) u=0$ is satisfied identically.
If p is the number of independent equations in the first K sets, then the general solution depends on $\mathrm{N}-\mathrm{p}$ arbitrary constants.

Review II:
Prolongation of PDEs and jet space

Prolongation

$$
F\left(x^{i}, f^{a}, \partial_{i} f^{a}, \partial_{j} \partial_{i} f^{a}, \cdots\right)=0
$$

Introduce new functions

$$
u^{\alpha}:=\partial \cdots \partial f^{a}
$$

$$
\frac{\partial u^{\alpha}}{\partial x^{i}}=\psi_{i}^{\alpha}(x, u) \quad i=1, \cdots, n \quad \alpha=1, \cdots, N
$$

Example

Introduce $w=u_{y}-v_{x}$

$$
\begin{aligned}
& u_{x}=a u+b v \\
& u_{y}+v_{x}=c u+d v \\
& v_{y}=e u+f v
\end{aligned}
$$

$$
\begin{aligned}
u_{x} & =a u+b v \\
u_{y} & =\frac{1}{2}(c u+d v+w) \\
v_{x} & =\frac{1}{2}(c u+d v-w) \\
v_{y} & =e u+f v \\
w_{x} & =w_{x}(u, v, w) \\
w_{y} & =w_{y}(u, v, w)
\end{aligned}
$$

Prolongation

$$
F(x, f, \partial f, \partial \partial f, \cdots)=0
$$

Introduce new functions

$$
u^{\alpha}:=\partial \cdots \partial f^{a}
$$

Not always possible

$$
\frac{\partial u^{\alpha}}{\partial x^{i}}=\psi_{i}^{\alpha}(x, u) \quad i=1, \cdots, n \quad \alpha=1, \cdots, N
$$

Example

Cauchy-Riemann equation

$$
\begin{aligned}
& u_{x}=v_{y} \\
& u_{y}=-v_{x}
\end{aligned}
$$

Impossible to make a prolongation!

In fact, solution of this system depends on one holomorphic function.

Prolongation

$$
F(x, f, \partial f, \partial \partial f, \cdots)=0
$$

Introduce new functions

$$
u^{\alpha}:=\partial \cdots \partial f^{a}
$$

Not always possible

$$
\frac{\partial u^{\alpha}}{\partial x^{i}}=\psi_{i}^{\alpha}(x, u) \quad i=1, \cdots, n \quad \alpha=1, \cdots, N
$$

When can we make a prolongation successfully?

Prolongation of Killing equation

Killing symmetries

vector fields	Killing	Conformal Killing
symmetric	Killing-Stackel	Conformal Killing-Stackel
Stackel 1895		
anti-symmetric	Killing-Yano	Conformal Killing-Yano
		Yano 1952

Killing equation

$$
\nabla_{\mu} \xi_{v}+\nabla_{\nu} \xi_{\mu}=\mathbf{0}
$$

- $\nabla_{\mu} \xi_{\nu}=L_{\mu \nu}, \quad L_{\mu \nu}=\nabla_{[\mu} \xi_{\nu]}$
- $\nabla_{\mu} L_{\nu \rho}=-R_{\nu \rho \mu}{ }^{\sigma} \xi_{\sigma}$
- $\nabla_{\mu} \xi_{\nu}=L_{\mu \nu}, \quad L_{\mu \nu}=\nabla_{[\mu} \xi_{\nu]}$
- $\nabla_{\mu} L_{\nu \rho}=-R_{\nu \rho \mu}{ }^{\sigma} \xi_{\sigma}$
- Killing connection

$$
\boldsymbol{D}_{\mu} \hat{\xi}_{A} \equiv \nabla_{\mu}\binom{\xi_{v}}{\boldsymbol{L}_{\nu \rho}}-\left(\begin{array}{cc}
\mathbf{0} & \mathbf{1} \\
-\boldsymbol{R}_{\nu \rho \mu}{ }^{\sigma} & \mathbf{0}
\end{array}\right)\binom{\xi_{\sigma}}{\boldsymbol{L}_{\mu \nu}}
$$

- $\hat{\xi}_{A}=\left(\xi_{\mu}, L_{\mu \nu}\right)$: a section of $\boldsymbol{E}^{1} \equiv \boldsymbol{\Lambda}^{1}(\boldsymbol{M}) \oplus \boldsymbol{\Lambda}^{2}(\boldsymbol{M})$
- $\boldsymbol{D}_{\boldsymbol{\mu}}$: a connection on $\boldsymbol{E}^{\mathbf{1}}$

$$
D_{\mu} \hat{\xi}_{A}=\mathbf{0}
$$

The key

Killing vector fields \Leftrightarrow Parallel sections of E^{1}

- The number of parallel sections of $\boldsymbol{E}^{\mathbf{1}}$ is bound by the rank of $\boldsymbol{E}^{\mathbf{1}}$, which is given by

$$
N=\binom{n}{1}+\binom{n}{2}=n(n+1) / 2 .
$$

Hence, the maximum number of Killing vector fields is given by $\boldsymbol{n}(\boldsymbol{n}+1) / \mathbf{2}$.

Curvature condition

$$
D_{\mu} \widehat{\xi}_{A}=\mathbf{0}
$$

$$
\boldsymbol{R}_{\mu \nu A}^{B} \widehat{\xi}_{B} \equiv\left(D_{\mu} D_{v}-D_{v} D_{\mu}\right) \hat{\xi}_{A}=\mathbf{0}
$$

- The number of the solutions provides an upper bound on the number of Killing vector fields.
- The solutions themselves can be used as an ansatz for solving Killing equation.

Prolongation of Killing-Yano equation

Killing symmetries

vector fields	Killing	Conformal Killing
symmetric	Killing-Stackel	Conformal Killing-Stackel
Stackel 1895		
anti-symmetric	Killing-Yano	Conformal Killing-Yano
		Yano 1952

Killing-Yano equation

$$
\nabla_{(\mu} \xi_{\left.v_{1}\right) v_{2} \ldots v_{n}}=0
$$

$$
\nabla_{X} \xi=\frac{1}{p+1} i(X) d \xi
$$

$$
\nabla_{X}(d \xi)=\frac{p+1}{p} R^{+}(X) \xi \quad \quad R^{+}(X):=e^{a} \wedge R\left(X, X_{a}\right)
$$

Prolongation of Killing-Yano equation

$$
\begin{aligned}
& \mathcal{D}_{X} \hat{\psi}=0 \quad \mathcal{D}_{X} \hat{\psi}:=\nabla_{X}\binom{\psi_{p}}{\psi_{p+1}}+\left(\begin{array}{cc}
0 & -\frac{1}{p+1} i(X) \\
-\frac{p+1}{p} R^{+}(X) & 0
\end{array}\right)\binom{\psi_{p}}{\psi_{p+1}} \\
& \hat{\psi}=\left(\psi_{p}, \psi_{p+1}\right) \in \Gamma\left(E^{p}\right) \quad E^{p}=\Lambda^{p}(M) \oplus \Lambda^{p+1}(M)
\end{aligned}
$$

Killing-Yano tensors of rank p

- Killing connection [Semmelmann 2002]
Rank-p KY tensors \Leftrightarrow Parallel sections of $E^{p}=\Lambda^{p}(M) \oplus \Lambda^{p+1}(M)$

$$
D_{\mu} \hat{\xi}_{A}=0 \quad \hat{\xi}_{A}=\left(\xi_{\mu_{1} \ldots \mu_{p}}, L_{\mu_{1} \ldots \mu_{p+1}}\right)
$$

- The maximal number

$$
N=\binom{n}{p}+\binom{n}{p+1}=\binom{n+1}{p+1}
$$

- Curvature conditions
[TH-Yasui 2014]

$$
\boldsymbol{R}_{\boldsymbol{\mu v A}}^{B} \widehat{\xi}_{B} \equiv\left(\boldsymbol{D}_{\boldsymbol{\mu}} \boldsymbol{D}_{v}-\boldsymbol{D}_{\nu} \boldsymbol{D}_{\boldsymbol{\mu}}\right) \hat{\xi}_{A}=\mathbf{0}
$$

Curvature condition

$>\mathcal{R}(X, Y): \Gamma\left(E^{p}\right) \rightarrow \Gamma\left(E^{p}\right), \quad E^{p}=\Lambda^{p}(M) \oplus \Lambda^{p+1}(M)$

$$
\mathcal{R}(X, Y)=\left(\begin{array}{cc}
N_{11}(X, Y) & 0 \\
N_{21}(X, Y) & N_{22}(X, Y)
\end{array}\right)
$$

- $N_{11}(X, Y): \Lambda^{\mathrm{p}}(\mathrm{M}) \rightarrow \Lambda^{p}(M)$

$$
N_{11}(X, Y)=R(X, Y)+\frac{1}{p}\left(i(X) \wedge R^{+}(Y)-i(Y) \wedge R^{+}(X)\right)
$$

- $N_{21}(X, Y): \Lambda^{\mathrm{p}}(\mathrm{M}) \rightarrow \Lambda^{p+1}(M)$

$$
N_{21}(X, Y)=-\frac{p+1}{p}\left(\left(\nabla_{X} R\right)^{+}(Y)-\left(\nabla_{Y} R\right)^{+}(X)\right)
$$

- $N_{22}(X, Y): \Lambda^{\mathrm{p}+1}(\mathrm{M}) \rightarrow \Lambda^{p+1}(M)$

$$
N_{22}(X, Y)=R(X, Y)+\frac{1}{p}\left(R^{+}(X)(i(Y))-R^{+}(Y)(i(X))\right)
$$

The number of $K Y$ tensors in maximally symmetric space

$$
N=\binom{n+1}{p+1}
$$

U Semmelmann 2002

	$P=1$	$P=2$	$P=3$	$P=4$
3D	6	4		
4D	10	10	5	
5D	15	20	15	6

Symmetry of Kerr spacetime

Kerr metric

$$
\begin{array}{r}
d s^{2}=-\frac{\Delta}{\Sigma}\left(d t-a \sin ^{2} \theta d \phi\right)^{2}+\frac{\sin ^{2} \theta}{\Sigma}\left(a d t-\left(r^{2}+a^{2}\right) d \phi\right)^{2}+\frac{\Sigma}{\Delta} d r^{2}+\Sigma d \theta^{2} \\
\Delta=r^{2}-2 M r+\mathbf{a}^{2}, \quad \Sigma=r^{2}+\mathbf{a}^{2} \cos ^{2} \theta
\end{array}
$$

- Two Killing vector fields: $\boldsymbol{\partial} / \boldsymbol{\partial} \boldsymbol{t}$ and $\boldsymbol{\partial} / \boldsymbol{\partial} \boldsymbol{\phi}$
- One rank-2 Killing-Yano tensor:

$$
f=a \cos \theta d r \wedge\left(d t-a \sin ^{2} \theta d \phi\right)+r \sin \theta d \theta \wedge\left(a d t-\left(r^{2}+a^{2}\right) d \phi\right)
$$

Our result:

Kerr metric admits exactly two Killing vector fields, one rank-2 and no rank-3 KY tensors.

The number of rank-p KY tensors

4D metrics	$\boldsymbol{p}=\mathbf{1}$	$\boldsymbol{p}=\mathbf{2}$	$\boldsymbol{p}=\mathbf{3}$
Maximally symmetric	10	10	5
Plebanski-Demianski	2	0	0
Kerr	2	1	0
Schwazschild	4	1	0
FLRW	6	4	1
Self-dual Taub-NUT	4	4	0
Eguchi-Hanson	4	3	0

The number of rank-p KY tensors

5D metrics	$\boldsymbol{p}=\mathbf{1}$	$\boldsymbol{p}=\mathbf{2}$	$\boldsymbol{p}=\mathbf{3}$	$\boldsymbol{p}=\mathbf{4}$
Maximally symmetric	15	20	15	6
Myers-Perry	3	0	1	0
Emparan-Reall	3	0	0	0
Kerr string	3	1	0	1

Prolongation of Killing-Stackel equation

Killing symmetries

vector fields	Killing	Conformal Killing
symmetric	Killing-Stackel	Conformal Killing-Stackel
Stackel 1895		
anti-symmetric	Killing-Yano	Conformal Killing-Yano
		Yano 1952

The number of KS tensors in maximally symmetric space

$$
N=\frac{1}{n}\binom{n+p}{p+1}\binom{n+p-1}{p}
$$

C Barbance 1973

	$P=1$	$P=2$	$P=3$	$P=4$	
3D	6	20	50	105	\ldots
$4 D$	10	50	175	490	\ldots
5D	15	105	490	1764	\ldots

Work in progress

Summary

We have shown a prolongation of Killing, Killing-Yano equations.
*Prolongation of Killing-Stackel equation is in progress.

Once one make a prolongation successfully, one can discuss properties of solution to the system.

