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Angular momentum of light
•Spin angular momentum

•Orbital angular momentum
circular polarization

helical wavefront

Vortex beam
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What is  
Vortex beam?
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Recently, some application of vortex beam to 
astrophysics  have been considered

Application information science, 
the vortex beam has more information  
than the plane wave

・Allen et. al , Phvs. Rev. A, 45, 8185 (1992)

・

・

J. Wangi et. al, Nature  Photonics 6, 488-496(2012)

F. Tamburini et. al, Nature Physics 7, 195(2011)

Why vortex beam?



Vortex beam carries   
Orbital Angular Momentum

 the vortex beam carries the orbital 
angular momentum 
about the propagation axis.
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Production and Observation
                of the vortex beam



The pattern of interference
                         with plane wave 

m=1 m=3



Production of vortex beam

vortex beamPlane wave 

input Output

This plate is made of glass
,called spiral phase plate
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Solutions of vortex beam
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Propagation of plane waves 
 in a Gravitational field



Eikonal approximation 

wave vector
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plane wave

vortex beam

?

Geodesic equation

Propagation of wave

Eikonal 
approximation

Eikonal 
approximation



 Propagation of vortex 
beam

~flat spacetime~ 



Orbit of Bessel beam in flat spacetime
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uniquely defined at each point. P (r) depends nonlinearly on
ψ(r), so the superposition of trajectories is different from the
trajectories of the superposition.

In vacuum or any homogeneous medium, the geometrical
rays are straight lines. This is an immediate consequence
of Snell’s law (or, more abstractly, Hamilton’s equations),
according to which rays bend only if there is a variation of
refractive index. The straightness is not immediately obvious
from the algebraic formulae describing the rays, but will be
confirmed by showing that they satisfy the following equations,
expressing the vanishing of the curvature |r′ × r′′|/|r′|:

rφ′′ + 2r ′φ′ = 0, r ′′ − rφ′2 = 0. (1.4)

By contrast, the trajectories of the exact Poynting vector are
usually curved.

For the beams we study here, it turns out, unexpectedly, to
be easier to calculate the exact Poynting trajectories than the
geometrical rays, which require knowledge of the asymptotics
of Bessel and Laguerre functions.

2. Bessel beams: exact Poynting flow lines

These beams are exact solutions of the Helmholtz equation,
defined [8, 9] by

ψl (r) = exp
{

i
(√

k2 − q2z + lφ
)}

Jl (qr) , (2.1)

in which l is the angular momentum quantum number, k the
free-space wavenumber and q the magnitude of the transverse
component of the wavevector of the plane waves comprising
the beam.

Since the Bessel function is real, only the first factor
contains the phase argψ which according to (1.1) generates
the Poynting vector, and (1.2) gives

vr = 0, vφ = l

r
√

k2 − q2
. (2.2)

The trajectories are determined by the differential equa-
tions (1.3), which can be trivially solved to give

r = constant, φ = φ0 + l

r 2
√

k2 − q2
z. (2.3)

This describes a two-parameter family of helices (figure 1)
filling space. Each helix can be defined by the point {r,φ0}
where it pierces the plane z = 0.The pitch of the helices with
radius r is

#z = 2πr 2
√

k2 − q2

l
, (2.4)

so the wider helices are more longitudinally stretched.

3. Laguerre–Gauss beams: exact Poynting flow lines

These beams are exact solutions of the paraxial wave equation,
defined [3] by

ψl,p (r) = exp {i (kz + lφ)} exp
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Figure 1. Exact Poynting trajectories for Bessel beams. The
trajectories, which fill space, are helices wound on cylinders
corresponding to different radii r , and the helices on different
cylinders have different pitches#z, according to (2.4).

Here L |l|
p denotes the Laguerre polynomial [10], with indices

representing the angular momentum quantum number l and
radial node number p (that is, p + 1 radial bright rings), the
scaled coordinates are defined in terms of the waist radius w0

(1/e radius of the intensity |ψ|2) by

{x, y, z} ≡
{
ξw0, ηw0, kw2

0ζ
}
, ρ ≡

√
ξ 2 + η2, (3.2)

and
w(ζ ) = 1 + iζ. (3.3)

For convenience we will henceforth consider only positive
l, and so will omit the modulus signs. (The paraxial
approximation to Bessel beams, in which

√
k2 − q2 in (2.1)

is approximated by k − q2/2k can be obtained from (3.1) in
the limit p → ∞, using the identity (22.15.2) in [10].)

Since Ll
p is real, it does not contribute to the phase, which

is therefore given by

argψl,p = kz + lφ + ρ2ζ

2
(
1 + ζ 2

) + G (ζ ) . (3.4)

G(ζ ) denotes the Gouy phase, which enters through the factors
involving powers of w(ζ ) and does not affect the shape of
the trajectories apart from a slight longitudinal stretching; in
what follows, we will neglect this effect. Identification of the
Poynting components via (1.2) gives

vρ = ρζ

1 + ζ 2
, vφ = l

ρ
, (3.5)

and thence the differential equations (1.4) determining the
trajectories:

ρ ′ (ζ ) = ρ (ζ ) ζ

1 + ζ 2
, φ′ (ζ ) = l

ρ (ζ )2 . (3.6)
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Decomposition of wave vectors
uµ = ūµ + vµ



~curved spacetime~ 

 Propagation of vortex 
beam



Scale of beam radius 
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 Orbit of Bessel beam in a curved 
spacetime
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metric perturbation 

correction term
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Perturbed eikonal equation 

Averaging
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Perturbed eikonal equation 

the extra force between angular momentum 
of the vortex beam and curved space-time.

H :=
1
2
gµ�kµk� � kµhµ�v� +

1
2
q2 = 0

Dẋµ
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Riemann normal coordinate
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How does vortex beam 
propagate around Kerr B.H?
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Orbit of vortex beam 
 on the equatorial plane 
of a Kerr Black hole



a：Kerr parameter
M:mass of black hole 

perturbative form 
 of Kerr metric
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Expanding metric around Beam
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Propagation of parallel to axis 
of black hole

attracting force！
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 Toward black hole 
 on equatorial plane

 the force acts in the z direction



 Propagation 
 to the azimuth direction
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Summary
•We obtained the equation for orbit of  
the vortex beam in the Kerr spacetime. 

• Extra force depend on     . 
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 Future Work
•By using vortex beam,  
we determine spin parameter 
of Black hole

•observing distribution of m of light 
emitted by a same source in the Kerr 
space-time  





Observation of vortex photon  
photons with even 
values of l into Port A1

photons with odd
values of l into Port B1

eim� eim�+im��
 Phys. Rev. Lett. 88, 257901(2002)


