Propagation of

vortex beam

around a Kerr black hole

Atsuki Masuda Osaka City University

collaborator: Hideki Ishihara(Osaka City University)
Shunichiro Kinoshita (Osaka City University)

Angular momentum of light - Spin angular momentum

- Orbital angular momentum

Contents

- What is a vortex beam

Property, Production, Observation

- Propagation of plane wave
- Propagation of a vortex beam
- Results

What is

Vortex beam?

What is vortex beam?

$\psi \propto e^{i(k z+m \phi-\omega t)}$
m :integer $\quad \phi$:azimuthal angule

vortex beam

Why vortex beam?

- Allen et. al , Phvs. Rev. A, 45, 8185 (1992)
- J. Wangi et. al, Nature Photonics 6, 488-496(2012) Application information science, the vortex beam has more information than the plane wave
F. Tamburini et. al, Nature Physics 7, 195(2011) Recently, some application of vortex beam to astrophysics have been considered

Vortex beam carries

Orbital Angular Momentum

the vortex beam carries the orbital angular momentum about the propagation axis.
wave fronts
$m=-1$
$\mathrm{m}=0$
$m=+1$

$m=+2$

Production and Observation of the vortex beam

The pattern of interference with plane wave

$m=1$

$\mathrm{m}=3$

Production of vortex beam

 This plate is made of glass,called spiral phase plate

Plane wave

vortex beam

Solutions of vortex beam Bessel function

Be)sel $\psi=J_{m}^{\prime}(q \rho) \exp [i(-\omega t+k z)] \exp (i m \phi)$ beam
dispersion relation $q^{2}=\omega^{2}-k^{2}$

Laguerre function

Laguerre
Gaussian $\psi=(\sqrt{2} \rho / w)^{m} L_{0}^{m}\left(-2 \rho^{2} / w^{2}\right) \exp (i m \phi)\left(w_{0} / w\right)$ beam $\left.\exp \left[-\rho^{2}\left(1 / w^{2}-i k / 2 R\right)-i \Phi\right)\right]$
$w^{2}=w_{0}\left[1+\left(2 z / k w_{0}^{2}\right)^{2}\right], R=z\left[1+\left(k w_{0}^{2} / 2 z\right)^{2}\right], \Phi=(m+1) \arctan \left(2 z / k w_{0}^{2}\right)$

Propagation of plane waves in a Gravitational field

Eikonal approximation

$$
\begin{aligned}
& g^{\mu \nu} \nabla_{\mu} \nabla_{\nu} \psi=0 \quad \psi \equiv A e^{i \frac{S}{\epsilon}} \\
\sim & \frac{1}{\epsilon^{2}} g^{\mu \nu}\left(\nabla_{\mu} S\right)\left(\nabla_{\nu} S\right) A e^{i \frac{S}{\epsilon}}=0
\end{aligned}
$$

Hamilton equation of massless particle wave vector $\quad k_{\mu} \equiv \nabla_{\mu} S$

$$
\dot{x}^{\alpha}=\frac{\partial H}{\partial k_{\alpha}}, \dot{k}^{\alpha}=-\frac{\partial H}{\partial x^{\alpha}}
$$

$D \dot{x}^{\mu}$

Propagation of wave

Geodesic equation
vortex beam Eikonal

Propagation of vortex beam

~flat spacetime~

Orbit of Bessel beam in flat spacetime

ψ_{B} :Bessel beam solution
(exact solution of wave equation in flat spacetime)

$$
\psi_{B}=J_{m}(q \rho) e^{i S} \quad S=-\omega t+k z+m \phi
$$

$$
\text { q,k, } \omega: c o n s t a n t
$$

$$
u_{\mu}=\nabla_{\mu} S
$$

$$
=(-\omega, 0, m, k)
$$

$\bar{u}_{\mu}=\frac{1}{\int d S} \int u_{\mu} d S$

Decomposition of wave vectors

Propagation of vortex beam

~curved spacetime~

Scale of beam radius

curvature scale
L
> d

Orbit of Bessel beam in a curved

 spacetime$g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}$
metric perturbation
$\psi=J_{m}(q \rho) e^{i \frac{S+\delta S}{\epsilon}}{ }_{\text {correction term }}$

$$
\delta u_{\mu} \equiv \partial_{\mu} \delta S
$$

$$
\bar{k}_{\mu}:=\bar{u}_{\mu}+\delta \bar{u}_{\mu}
$$

Perturbed eikonal equation

Ansatz

$$
\begin{aligned}
g & =\eta+h \\
\psi & =\psi_{B} e^{i \frac{\delta S}{\epsilon}}
\end{aligned}
$$

Averaging

$$
k_{\mu}=\bar{u}_{\mu}+\overline{\delta u}_{\mu}
$$

$$
H:=\frac{1}{2} g^{\mu \nu} k_{\mu} k_{\nu}-k_{\mu} \overline{h^{\mu \nu} v_{\nu}}+\frac{1}{2} q^{2}=0
$$

Perturbed eikonal equation
$H:=\frac{1}{2} g^{\mu \nu} k_{\mu} k_{\nu}-k_{\mu} \overline{h^{\mu \nu} v_{\nu}}+\frac{1}{2} q^{2}=0$

$$
\dot{x}^{\alpha}=\frac{\partial H}{\partial k_{\alpha}} \quad \dot{k}^{\alpha}=-\frac{\partial H}{\partial x^{\alpha}}
$$

$D \dot{x}^{\mu}$
$\frac{D}{D \tau}=\dot{x}^{\nu} g_{\nu \alpha} \nabla^{\mu} \overline{h^{\alpha \beta} v_{\beta}}$
the extra force between angular momentum of the vortex beam and curved space-time.

Riemann normal coordinate

$h_{\mu \nu}=-\frac{1}{3} R_{\mu \alpha \nu \beta}\left(x^{\alpha}-x_{B}^{\alpha}\right)\left(x^{\beta}-x_{B}^{\beta}\right)$

$$
\frac{D \dot{x}^{\mu}}{D_{\tau}}=\dot{x}^{\alpha} g_{\nu \alpha} \nabla^{\nu} \overline{h^{\alpha \beta} v_{\beta}}
$$

$$
\frac{D \dot{x}^{\mu}}{D \tau}=-\frac{1}{2 q} R_{\mu \nu \alpha \beta} u^{\nu} S^{\alpha \beta}
$$

where

$$
\begin{gathered}
S^{\nu \beta}=\frac{1}{2}\left(\overline{X_{B}^{\nu} v^{\beta}-X_{B}^{\beta} v^{\nu}}\right) \\
X_{B}^{\mu}=x^{\mu}-x_{B}^{\mu}
\end{gathered}
$$

How does vortex beam

 propagate around Kerr B.H?$$
\frac{D \dot{x}^{\mu}}{D \tau}=-\frac{1}{2 q} R_{\mu \nu \alpha \beta} u^{\nu} S^{\alpha \beta}
$$

Orbit of vortex beam

 on the equatorial plane of a Kerr Black hole
perturbative form

of Kerr metric

$$
\begin{array}{r}
d s^{2}=-(1-2 \Phi) d t^{2}+2 h_{t i} d x^{i} d t+(1+2 \Phi) \delta_{i j} d x^{i} d x \\
\Phi=\frac{M}{r} \quad h_{t i}=\frac{2 M a}{r^{3}}(-y, x, 0)
\end{array}
$$

M:mass of black hole a : Kerr parameter

Expanding metric around Beam

$-\frac{1}{2 q} R_{\mu \nu \alpha \beta} u^{\nu} S^{\alpha \beta}=\frac{1}{2 q} \partial_{\mu}\left(\partial_{l} h_{t k}-\partial_{k} h_{t l}\right) u^{t} S^{k l}$

$$
=\frac{1}{2} \nabla_{\mu}\left(\vec{B}_{g} \cdot \vec{l}\right)
$$

where $_{B_{i j}}=\frac{1}{4}\left(\frac{\partial h_{t i}}{\partial x^{j}}-\frac{\partial h_{t j}}{\partial x^{i}}\right), \quad l^{i}=\frac{u^{t}}{2 q} \epsilon^{i j k} S_{j k}$

$$
\frac{D \dot{x}^{\mu}}{D \tau}=\frac{1}{2} \nabla_{\mu}\left(\vec{B}_{g} \cdot \vec{l}\right)
$$

Configuration of Bg

Propagation of parallel to axis

of black hole

$$
\frac{D \dot{x}^{\mu}}{D \tau}=\frac{1}{2} \nabla_{\mu}\left(\vec{B}_{g} \cdot \vec{l}\right)
$$

Toward black hole

 on equatorial plane
the force acts in the z direction

Propagation

to the azimuth direction

 not acting extra force

Summary

- We obtained the equation for orbit of the vortex beam in the Kerr spacetime.

$$
\begin{gathered}
\frac{D \dot{x}^{\mu}}{D \tau}=\frac{1}{2} \nabla_{\mu}\left(\vec{B}_{g} \cdot \vec{l}\right) \\
\overrightarrow{B_{g}}=\vec{\nabla} \times \vec{h} \quad l^{i}=\frac{u^{t}}{2 q} \epsilon^{i j k} S_{j k}
\end{gathered}
$$

- Extra force depend on \bar{q}.

Future Work

- By using vortex beam,
we determine spin parameter of Black hole
- observing distribution of m of light emitted by a same source in the Kerr space-time

Observation of vortex photon

Phys. Rev. Lett. 88, 257901(2002)

$$
e^{i m \phi} e^{i m \phi+i m \alpha}
$$

photons with even values of I into Port A1
photons with odd
values of I into Port B1

