Propagation of vortex beam around a Kerr black hole

Atsuki Masuda Osaka City University

collaborator: Hideki Ishihara(Osaka City University) Shunichiro Kinoshita (Osaka City University)

Angular momentum of lightSpin angular momentum

circular polarization

Orbital angular momentum

(b)

helical wavefront Vortex beam

- What is a vortex beam
 Property, Production, Observation
- Propagation of plane wave
- Propagation of a vortex beam
- Results

What is

Vortex beam?

vortex beam

Why vortex beam?

- Allen et. al , Phys. Rev. A, 45, 8185 (1992)
- J. Wangi et. al, Nature Photonics 6, 488-496(2012) Application information science, the vortex beam has more information than the plane wave
- F. Tamburini et. al, Nature Physics 7, 195(2011) Recently, some application of vortex beam to astrophysics have been considered

Vortex beam carries Orbital Angular Momentum

the vortex beam carries the orbital angular momentum about the propagation axis.

wave frontsm=-1m=0m=+1

Production and Observation of the vortex beam

The pattern of interference with plane wave

m=1

Production of vortex beam

This plate is made of glass ,called spiral phase plate

vortex beam

Solutions of vortex beam Bessel $\psi = J_m(q\rho) \exp[i(-\omega t + kz)] \exp(im\phi)$ beam dispersion relation $q^2 = \omega^2 - k^2$

Laguerre Laguerre function Gaussian $\psi = \left(\sqrt{2}\rho/w\right)^m L_0^m \left(-2\rho^2/w^2\right) \exp(im\phi)(w_0/w)$ beam $\exp\left[-\rho^2 (1/w^2 - ik/2R) - i\Phi\right]$ $w^2 = w_0 \left[1 + \left(2z/kw_0^2\right)^2\right], R = z \left[1 + \left(kw_0^2/2z\right)^2\right], \Phi = (m+1)\arctan\left(2z/kw_0^2\right)$ Propagation of plane waves in a Gravitational field

Eikonal approximation

$$g^{\mu\nu} \bigtriangledown_{\mu} \bigtriangledown_{\nu} \psi = 0 \quad \psi \equiv A e^{i\frac{S}{\epsilon}}$$

$$\sim \frac{1}{\epsilon^2} g^{\mu\nu} (\bigtriangledown_{\mu} S) (\bigtriangledown_{\nu} S) A e^{i\frac{S}{\epsilon}} = 0$$
amilton equation of massless particle
wave vector $k_{\mu} \equiv \bigtriangledown_{\mu} S$

$$\oint \dot{x}^{\alpha} = \frac{\partial H}{\partial k_{\alpha}} , \quad \dot{k}^{\alpha} = -\frac{\partial H}{\partial x^{\alpha}}$$

 $\frac{D\dot{x}^{\mu}}{D\tau} = 0 , \quad g_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu} = 0$

Propagation of vortex beam

~flat spacetime~

Orbit of Bessel beam in flat spacetime

 ψ_B :Bessel beam solution

(exact solution of wave equation in flat spacetime)

$$\psi_B = J_m(q\rho)e^{iS}$$
 $S = -\omega t + kz + m\phi$
Jm:Bessel function q,k, ω :constant

$$\begin{split} u_{\mu} &= \nabla_{\mu}S \\ &= (-\omega, 0, m, k) \\ \bar{u}_{\mu} &= \frac{1}{\int dS} \int u_{\mu}dS \\ &= (-\omega, 0, 0, k) \\ &= (-\omega, 0, 0, k) \end{split}$$

Decomposition of wave vectors

Propagation of vortex beam ~curved spacetime~

Orbit of Bessel beam in a curved spacetime $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ metric perturbation $\psi = J_m(q\rho) e^{i \frac{S + \delta S}{\epsilon}}$ correction term **L**Orbit $\delta u_{\mu} \equiv \partial_{\mu} \delta S$ $:= \bar{u}_{\mu} + \delta \bar{u}_{\mu}$

Perturbed eikonal equation

$$H := \frac{1}{2} g^{\mu\nu} k_{\mu} k_{\nu} - k_{\mu} \overline{h^{\mu\nu} v_{\nu}} + \frac{1}{2} q^{2} = 0$$

$$\downarrow \dot{x}^{\alpha} = \frac{\partial H}{\partial k_{\alpha}} \quad \dot{k}^{\alpha} = -\frac{\partial H}{\partial x^{\alpha}}$$

$$\frac{D \dot{x}^{\mu}}{D \tau} = \dot{x}^{\nu} g_{\nu\alpha} \nabla^{\mu} \overline{h^{\alpha\beta} v_{\beta}}$$

the extra force between angular momentum of the vortex beam and curved space-time.

Riemann normal coordinate

$$h_{\mu\nu} = -\frac{1}{3} R_{\mu\alpha\nu\beta} (x^{\alpha} - x_B^{\alpha}) (x^{\beta} - x_B^{\beta})$$

 Dx^{μ} $= \dot{x}^{\alpha} g_{\nu\alpha} \nabla^{\nu} h^{\alpha\beta} v_{\beta}$ $D\dot{x}^{\mu}$ $-\frac{1}{2q}R_{\mu\nu\alpha\beta}u^{\nu}S^{\alpha\beta}$ $S^{\nu\beta} = \frac{1}{2} \left(\overline{X_B^{\nu} v^{\beta} - X_B^{\beta} v^{\nu}} \right)$ $X_B^{\mu} = x^{\mu} - x_B^{\mu}$ where

Orbit of vortex beam on the equatorial plane of a Kerr Black hole perturbative form of Kerr metric

 $ds^{2} = -(1 - 2\Phi)dt^{2} + 2h_{ti}dx^{i}dt + (1 + 2\Phi)\delta_{ij}dx^{i}dx$

 $\Phi = \frac{M}{r} \quad h_{ti} = \frac{2Ma}{r^3}(-y, x, 0)$

M:mass of black hole a : Kerr parameter

Expanding metric around Beam

$$-\frac{1}{2q}R_{\mu\nu\alpha\beta}u^{\nu}S^{\alpha\beta} = \frac{1}{2q}\partial_{\mu}(\partial_{l}h_{tk} - \partial_{k}h_{tl})u^{t}S^{kl}$$

$$= \frac{1}{2} \nabla_{\mu} (\vec{B}_g \cdot \vec{l})$$

where $B_{ij} = \frac{1}{4} \left(\frac{\partial h_{ti}}{\partial x^j} - \frac{\partial h_{tj}}{\partial x^i} \right)$, $l^i = \frac{u^t}{2a} \epsilon^{ijk} S_{jk}$

 $\frac{D\dot{x}^{\mu}}{D\tau} = \frac{1}{2}\nabla_{\mu}(\vec{B}_g \cdot \vec{l})$

Propagation of parallel to axis of black hole

$= \frac{1}{2} \nabla_{\mu} (\vec{B}_g \cdot \vec{l})$ $D\dot{x}^{\mu}$ D auattracting force !

not acting extra force

Summary

 We obtained the equation for orbit of the vortex beam in the Kerr spacetime.

$$\frac{D\dot{x}^{\mu}}{D\tau} = \frac{1}{2} \nabla_{\mu} (\vec{B}_g \cdot \vec{l})$$

$$\vec{B_g} = \vec{\nabla} \times \vec{h} \qquad l^i = \frac{u^t}{2q} \epsilon^{ijk} S_{jk}$$

Extra force depend on $\frac{m}{2}$.

Future Work

 By using vortex beam, we determine spin parameter of Black hole

 observing distribution of m of light emitted by a same source in the Kerr space-time

Observation of vortex photon

Phys. Rev. Lett. 88, 257901(2002)

